🌟 Overview
Learn about the first step of any Data Science Methodology - Data Collection and Data Cleaning and how easily it can be achieved by using the Data Refinery Tool. Explore a sample data set and generate visualizations to get more insights & relationships within our data, clean the data accordingly, and enhance your business by taking quick meaningful decisions.

🎓 What will you learn?

  • Introduction to Watson Studio & Data Refinery
  • Data Cleaning - what, why, how
  • Exploratory Data Analysis (EDA)

👩‍💻 Who should attend?

  • Students who are interested in AI, Data Science but don't know where to start
  • Data Science & AI enthusiasts who want to learn how IBM can help you
  • Professional Developers who want to know more about the world of Data & AI
  • People who want to perform Data Cleaning without writing code

🎈 Prerequisites

  • Any prior experience with Data Processing would be advantageous. If you have no prior experience, read this blog as reference: https://towardsdatascience.com/data-analysis-using-excel-885f337c85c
  • Register for a free IBM Cloud Account: https://ibm.biz/BdfpGB

🍉 Register for the live stream and replay on Crowdcast:

  • Register for the live stream or to watch the replay: https://www.crowdcast.io/e/faster-data-cleaning

👩‍💻Resources

  • GitHub Repository - https://ibm.biz/data-refinery-repo
  • Workshop Slides - https://ibmdevelopermea.github.io/Speed-up-your-Data-Cleansing-with-Data-Refinery/
  • Survey - https://ibm.biz/data-refinery-survey
  • Follow along for the hands-on: https://developer.ibm.com/learningpaths/cloud-pak-for-data-learning-path/data-visualization-with-data-refinery/
  • Meetup page - https://www.meetup.com/IBM-Cloud-MEA/events/

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

center

+++ {"slideshow": {"slide_type": "slide"}}

License¶

Recommend that slides be shared under a CC-BY license.